Preparation of $3^A, 6^A$ -Anhydro- \mathcal{B} -cyclodextrin and Its Taka Amylolysis

Kahee FUJITA,* Hatsuo YAMAMURA,† Taiji IMOTO,† and Iwao TABUSHI††

Faculty of Pharmaceutical Sciences, Fukuyama University,

Sanzo, Higashimura-cho, Fukuyama 729-02

†Faculty of Pharmaceutical Sciences, Kyushu University,

Maidashi, Higashi-ku, Fukuoka 812

††Department of Synthetic Chemistry, Kyoto University,

Yoshida, Kyoto 606

 $3^{\rm A}$, $6^{\rm A}$ -Anhydro- β -cyclodextrin was prepared by the reaction of 6-O-(p-tosyl)- β -cyclodextrin with aqueous alkali. This anhydrocyclodextrin was enzymatically hydrolyzed by Taka amylase to give 3",6"-anhydromaltotetraose exclusively.

Cyclodextrins are enzymatically hydrolyzed by Taka-amylase. Melton and Slessor reported that 6-O-substituted α -cyclodextrins were hydrolyzed by Taka-amylase to give selectively 6'-O-substituted maltoses. We also found that 6-O-substituted α - or β -cyclodextrins, C-cyclodextrins, and core a specifically substituted α - or β -cyclodextrins, and core a specifically substituted maltooligosaccharide. Although providing information about interactions between substrates and the subsites of Taka-amylase and developing one-step synthetic method for substituted oligosaccharides, these studies are limited to the systems where all glucose units in cyclodextrins possess 4C_1 conformations. If a novel cyclodextrin derivative which contains a building block different from the normal 4C_1 glucose unit as a component of the macrocyclic structure is used as a substrate for the enzymatic hydrolysis, it will provide new information about the enzyme and a preparation method for a new type of oligosaccharide. We describe here synthesis of a novel cyclic oligosaccharide, ^{3}A , ^{6}A -anhydro- ^{3}A -cyclodextrin which contains a ^{3}A -canhydroglucose

unit with ${}^{1}C_{4}$ conformation 5) as one of the structure components of the macrocycle and describe also its Taka amylolysis to give 3",6"-anhydromaltotetraose.

A solution of 6-0-(p-tosyl)- β -cyclodextrin (1) (800 mg) in 1 mol dm⁻³ NaOH or saturated aqueous $Ba(OH)_2$ (10 mL) was kept at 40 ^{O}C . After 11 h, the starting material disappeared completely and a new spot was observed on silica gel TLC around the R_{f} value of ${\mathcal{B}}\text{-cyclodextrin.}$ The mixture was neutralized by addition of dilute HCl or ${\rm H}_2{\rm SO}_4$, filtered and applied on a reverse-phase column (Lobar Column LiChroprep RP8, size B, Merck). After eluting with H₂O (500 mL), 1% aqueous MeOH (300 mL), and 3% aqueous MeOH (300 mL), 7% aqueous MeOH (1100 mL) and then 20% aqueous MeOH (300 mL) were applied. The elution of the 20% aqueous MeOH gave \(\beta\)-cyclodextrin (57.8 mg, 8.2%). The elution of 7% MeOH gave a novel product (609 mg, 87.9%) whose R_f value on TLC (0.09) was slightly smaller than that of β -cyclodextrin (0.11). This compound was assigned to $3^{\text{A}}, 6^{\text{A}}$ -anhydro- β -cyclodextrin (2) on the basis of the following spectral data. Its FABMS spectrum showed a correct molecular ion $(M + H^{+})$ at m/z 1117. The 13 CNMR spectrum of $\mathbf{2}$ and the INEPT 13 C NMR spectrum demonstrated the presence of a unique methylene carbon at δ 68.2 other than normal methylene carbons (-CH₂OH, δ 59.8). The chemical shift of the unique carbon was very close to that of a methylene carbon (C $_6$) in methyl 3,6-anhydro-lpha-D-glucoside 3 6) ($m{6}$ 68.1), demonstratingthat the unique carbon was the carbon of the 3,6-anhydro-bridge. The ¹H NMR spectrum (400 MHz) of 2 gave a decisive evidence of its 3,6-anhydroglucoside structure (Fig. 1A). This was similar to that of methyl 3,6anhydro- α -D-glucoside 3 (Fig. 1B). The absorptions of 2 and 3 were easily assigned by the decoupling experiments and by comparing their coupling constants with reported ones of methyl 3,6-anhydro- $oldsymbol{eta}$ -D-glucoside 7) and methyl 2,4-di-O-acetyl-3,6-anhydro- α -D-glucoside⁸ (Table 1).⁹

The anhydrocyclodextrin 2 was enzymatically hydrolyzed by Taka amylase as follows. A solution of 2 (50 mg) and Taka amylase (50 mg, amylase Type IV, Sigma) in 5 mL of acetate buffer (pH 5.5, 0.2 mol dm $^{-3}$) containing CaCl $_2$ (0.01 mol dm $^{-3}$) was kept at 40 $^{\circ}$ C for 72 h. After usual workup procedure, 4) the mixture was chromatographed with a reverse-phase column to give 3",6"-anhydromaltotetraose (25 mg, 85.4%), whose FAB mass spectrum showed a correct molecular ion. The structure determination of the oligosaccharide was carried out

Chemistry Letters, 1988 545

as follows. The oligosaccharide was reduced with NaBH_4 to give the glucitol derivative, which was completely acetylated and analyzed by EI mass spectroscopy. The fragmentation pattern of the mass spectrum showed clearly that the 3,6-anhydroglucose unit was located at the second from the nonreducing end of the oligosaccharide.

Since 3-0-substituted cyclodextrins and 6-0-substituted cyclodextrins gave

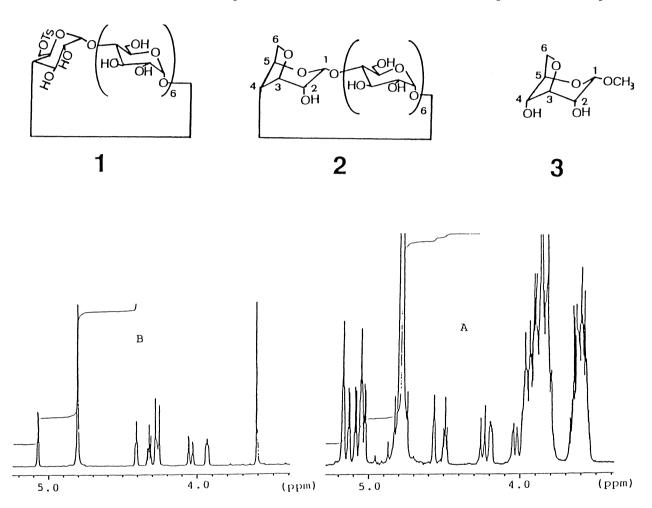


Fig. 1. 1 H NMR spectra (400 MHz) of 3^A , 6^A -anhydro- β -cyclodextrin 2 (A) and methyl 3,6-anhydro- α -D-glucoside 3 (B) in D₂0.

Table 1. 400 MHz 1 H NMR Chemical Shifts and Coupling Constants of 3^A , 6^A -Anhydro- β -cyclodextrin (2) and Methyl 3,6-Anhydro- α -D-glucoside (3) in D₂O

		Chemical shift (5, ppm)								Coupling constant/Hz						
	Н ₁	Н2	Н3	H ₄	^H 5	^H 6	^H 6'		J ₁₂	J ₂₃	J ₃₄	J ₄₅	J ₅₆	J ₅₆ '	J ₆₆ '	
2	5.18	≈ 3.9	4.49	4.19	4.57	4.04	4.25		≈ 2.6	4.8	4.8	2.0	2.4	0	11.2	
3	5.07	3.94	4.32	4.27	4.41	4.04	4.27		2.6	4.8	4.8	2.8	2.8	0	10.8	

546 Chemistry Letters, 1988

3'-substituted maltotrioses and 6'-substituted maltose, respectively, $^{2-4}$) in the enzymatic hydrolysis, 3,6-0-substituted β -cyclodextrin such as 2 is expected to afford enzymatically 3',6'-0-substituted maltotriose. However, the exclusive formation of 3",6"-anhydromaltotetraose was observed, demonstrating that the $^{1}C_{4}$ conformation of the 3,6-anhydroglucose unit was important factor controlling the cleavage pattern of the oligosaccharide by Taka amylase. Also, the substitution of a $^{1}C_{4}$ anhydroglucose unit for a $^{4}C_{1}$ normal glucose unit of cyclodextrins will develop a new type of sugar host having unique cavity shape without C_{n} symmetry axis. The present results that 3^{A} , 6^{A} -anhydro- β -cyclodextrin can be easily prepared and that Taka amylolysis of the anhydrocyclodextrin gave exclusively 3",6"-anhydromaltotetraose will be applicable to determination of regiochemistry of 6^{A} , 6^{X} -0-di(sulfonyl)- γ -cyclodextrins and 6^{A} -0-sulfonyl- 6^{X} -substituted- β -cyclodextrins. These results will be reported in the near future.

References

- 1) K. Suetsugu, S. Koyama, K. Takeo, and T. Kuge, J. Biochem., <u>76</u>, 57 (1974).
- 2) L. D. Melton and K. N. Slessor, Can. J. Chem., <u>51</u>, 327 (1973).
- 3) K. Fujita, A. Matsunaga, and T. Imoto, Tetrahedron Lett., 1984, 5533;
 I. Tabushi, T. Nabeshima, K. Fujita, A. Matsunaga, and T. Imoto, J.
 Org. Chem., 50, 2638; K. Fujita, A. Matsunaga, Y. Ikeda, and T. Imoto,
 Tetrahedron Lett., 1985, 6439; K. Fujita, A. Matsunaga, and T. Imoto, J.
 Am. Chem. Soc., 106, 5740 (1984).
- 4) K. Fujita, T. Tahara, S. Nagamura, T. Imoto, and T. Koga, J. Org. Chem. <u>52</u>, 636 (1987).
- 5) A X-ray crystallographic study on the structure of methyl 3,6-anhydroglucoside; B. Lindberg, B. Lindberg, and S. Svensson, Acta Chem. Scand., 27, 373 (1982).
- 6) W. H. Haskins, R. M. Hann, and C. S. Hudson, J. Am. Chem. Soc., <u>68</u>, 628 (1980).
- 7) S. Angyal and Y. Kondo, Carbohydr. Res., 81, 35 (1980).
- 8) J. Defaye and D. Horton, Carbohydr. Res., <u>65</u>, 283 (1978).
- 9) Although the $\rm H_2$ signal was overlapped on the signals of the other glucose units, its presence was evidenced by the decouplings with $\rm H_1$ and $\rm H_3$.

(Received December 5, 1987)